首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12475篇
  免费   541篇
  国内免费   4521篇
安全科学   832篇
废物处理   804篇
环保管理   946篇
综合类   6973篇
基础理论   2065篇
环境理论   6篇
污染及防治   4433篇
评价与监测   474篇
社会与环境   434篇
灾害及防治   570篇
  2024年   3篇
  2023年   202篇
  2022年   584篇
  2021年   490篇
  2020年   366篇
  2019年   367篇
  2018年   484篇
  2017年   571篇
  2016年   526篇
  2015年   709篇
  2014年   975篇
  2013年   1291篇
  2012年   1032篇
  2011年   1210篇
  2010年   870篇
  2009年   856篇
  2008年   900篇
  2007年   706篇
  2006年   661篇
  2005年   482篇
  2004年   352篇
  2003年   447篇
  2002年   385篇
  2001年   317篇
  2000年   346篇
  1999年   408篇
  1998年   336篇
  1997年   313篇
  1996年   296篇
  1995年   263篇
  1994年   178篇
  1993年   156篇
  1992年   113篇
  1991年   94篇
  1990年   65篇
  1989年   54篇
  1988年   44篇
  1987年   19篇
  1986年   22篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   10篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 869 毫秒
61.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.  相似文献   
62.
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl? and PO43? of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min?1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO? and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the “ecological structure activity relationships” program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.  相似文献   
63.
Triclosan(TCS) is commonly found in wastewater treatment plants,which often affects biological treatment processes.The responses of nitrification,antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study.The experiment was conducted in a sequencing batch reactor(SBR)for 240 days.Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered.And the abundances of nitrite oxidizing bacteria(NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge,which accounted for partial nitrification.When the addition of TCS was stopped,the abundance of NOB increased.The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system.Moreover,TCS increased the abundance of mexB,indicating the efflux pump might be the main TCS-resistance mechanism.As a response to TCS,bacteria could secrete more protein(PN) than polysaccharide.Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS.High-throughput sequencing found that the relative abundances of Paracoccus,Pseudoxanthomonas and Thauera increased,which could secrete extracellular polymeric substances(EPS).And Sphingopyxis might be the main TCS-degrading bacteria.Overall,TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.  相似文献   
64.
Ground-level ozone (O3) has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China. In this study, we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing, Jiangsu Province. Then, the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation (OBM). The relative incremental reactivity (RIR) of hydrocarbons was larger than other precursors, suggesting that hydrocarbons played the dominant role in O3 formation. The RIR values for NOX ranged from –0.41%/% to 0.19%/%. The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses. Simulation results illustrate that O3 formation was between VOCs-limited and transition regime. Xylenes and light alkenes were found to be key species in O3 formation according to RIR values, and their sources were determined using the Positive Matrix Factorization (PMF) model. Paints and solvent use was the largest contributor to xylenes (54%), while petrochemical industry was the most important source to propene (82%). Discussions on VOCs and NOX reduction schemes suggest that the 5% O3 control goal can be achieved by reducing VOCs by 20%. To obtain 10% O3 control goal, VOCs need to be reduced by 30% with VOCs/NOX larger than 3:1.  相似文献   
65.
Within the drinking water distribution system (DWDS) using chloramine as disinfectant, nitrification caused by nitrifying bacteria is increasingly becoming a concern as it poses a great challenge for maintaining water quality. To investigate efficient control strategies, operational conditions including hydraulic regimes and disinfectant scenarios were controlled within a flow cell experimental facility. Two test phases were conducted to investigate the effects on the extent of nitrification of three flow rates (Q = 2, 6, and 10 L/min) and four disinfection scenarios (total Cl2=1 mg/L, Cl2/NH3-N=3:1; total Cl2=1 mg/L, Cl2/NH3-N=5:1; total Cl2=5 mg/L, Cl2/NH3-N=3:1; and total Cl2=5 mg/L, Cl2/NH3-N=5:1). Physico-chemical parameters and nitrification indicators were monitored during the tests. The characteristics of biofilm extracellular polymetric substance (EPS) were evaluated after the experiment. The main results from the study indicate that nitrification is affected by hydraulic conditions and the process tends to be severe when the fluid flow transforms from laminar to turbulent (2300<Re<4000). Increasing disinfectant concentration and optimizing Cl2/NH3-N mass ratio were found to inhibit nitrification to some extend when the system was running at turbulent condition (Q = 10 L/min, Re = 5535). EPS extracted from biofilm that was established at the flow rate of 6 L/min had greater carbohydrate/protein ratio. Furthermore, several nitrification indicators were evaluated for their prediction efficiency and the results suggest that the change of nitrite, together with total organic carbon (TOC) and turbidity can indicate nitrification potential efficiently.  相似文献   
66.
An effective broad-spectrum fungicide, azoxystrobin (AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2–0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the secretion of total organic carbon (TOC) in the culture media of the two species, and this phenomenon was also found in a freshwater microcosm experiment (containing the natural microbial community). We attempted to assess the effect of AZ on the function of aquatic microbial communities through metabolomic analysis and further explore the potential risks of this compound. The metabonomic profiles of the microcosm indicated that the most varied metabolites after AZ treatment were related to the citrate cycle (TCA), fatty acid biosynthesis and purine metabolism. We thereby inferred that the microbial community increased extracellular secretions by adjusting metabolic pathways, which might be a stress response to reduce AZ toxicity. Our results provide an important theoretical basis for further study of fungicide stress responses in aquatic microcosm microbial communities, as well as a good start for further explorations of AZ detoxification mechanisms, which will be valuable for the evaluation of AZ environmental risk.  相似文献   
67.
本研究利用生物气候、地形、底质类型、海温等环境因子和红树林分布数据建立了福建省红树林分布模型,基于最大熵方法分析了福建省沿岸红树林潜在适生区的空间分布.根据模型输出结果对福建省红树林的生境适宜性进行了评估,识别了影响红树林分布的关键环境因子及其适生值区间,并通过空间叠加分析获取了福建省红树林保护与修复的优先区与空缺区域.结果表明,影响福建省红树林适生区分布格局的主要环境因子包括海表温度、气温和降水等,福建省红树林潜在适生区主要位于沙埕港-三沙湾-兴化湾沿岸、泉州湾-厦门湾-九龙江口沿岸、漳江口-东山湾沿岸等地,其中最优适生区面积约为91km2.全省共识别出8处红树林保护与修复的优先区域,现存红树林保护率约为64.4%,保护修复空缺主要出现在沙埕港、三沙湾、罗源湾、福清湾等处,研究结论可为未来福建省红树林保护和修复行动提供科学参考.  相似文献   
68.
Mitigation and Adaptation Strategies for Global Change - Electric vehicles (EVs) play a crucial role in addressing climate change and urban air quality concerns. China has emerged as the global...  相似文献   
69.
Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation.  相似文献   
70.
TiO_2 nanoparticles(NPs) could adversely impact aquatic ecosystems. However, the aggregation of these NPs could attenuate this effect. In this work, the biological effects of TiO_2 NPs on a marine microalgae Isochrysis galbana were investigated. The aggregation kinetics of TiO_2 NPs under different conditions was also investigated to determine and understand these effects. Results showed that, though TiO_2 NPs had no obvious impact on the size and reproducibility of algal cells under testing conditions, they caused a negative effect on algal chlorophyll, which led to a reduction in photosynthesis. Furthermore, fast aggregation of TiO_2 NPs occurred under all conditions, especially at the pH close to the p Hzpc. Increasing ionic strength and NP concentration also enhanced the aggregation rate.The aggregation and the following sedimentation of TiO_2 NPs reduced their adverse effects on I. galbana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号